Freistaat Bayern, Staatliches Bauamt Weilheim

Straße: B 11 / Abschnitt 320, Station 1,920 bis Abschnitt 320, Station 5,120

B 11

Ausbau nördlich Reindlschmiede

Bau-km 0+000 bis 3+351

PROJIS-Nr.:

Feststellungsentwurf

- Wassertechnische Untersuchungen -

aufgestellt: Staatliches Bauamt Weilheim	
The state of the s	
Fritsch, Ltd. Baudirektor Weilheim, den 04.05.2020	

INHALTSVERZEICHNIS

0.	VORBEMERKUNGEN	2
1.	BERECHNUNGSGRUNDLAGEN	2
1.1	Allgemeines	2
1.2	Abflussbeiwerte	2
1.3	Bemessungsparameter zur Anlagendimensionierung	3
1.4	Bemessungsparameter für die qualitative Gewässerbelastung	3
1.5	Niederschlagshöhen und -spenden gemäß KOSTRA-Regenreihen	4
2.	ENTWÄSSERUNGSABSCHNITTE	6
2.1	Einzugsgebiet 1	6
2.2	Einzugsgebiet 2	6
2.3	Einzugsgebiet 3	7
2.4	Einzugsgebiet 4	7
2.5	Einzugsgebiet 5	8
2.6	Einzugsgebiet 6	8
2.7	Einzugsgebiet 7	9
2.8	Einzugsgebiet 8	9
3.	ANLAGENBEMESSUNG	10
3.1	Sickermulde 1	10
3.2	Sickermulde 2	12
3.3	Sickermulde 3	14
3.4	Sickerfläche 1	16
3.5	Regenrückhaltebecken 1	18
3.6	Sickermulde 4	20
3.7	Regenrückhaltebecken 2	22
3.8	Sickermulde 5	24
4.	NACHWEISE GEMÄSS MERKBLATT ATV-DVWK-M 153	26
4.1	Sickermulden	26
4.2	Sickerfläche 1	28
4.3	Regenrückhaltebecken	30
4.4	Ausleitung in Auer Bach	31
4.5	Ausleitung bei Bau-km 1 + 920	32

0. VORBEMERKUNGEN

Aussagen zu den bestehenden Verhältnissen und den geplanten Maßnahmen können Unterlage Nr. 1 "Erläuterungsbericht (Abs. 4.12)" entnommen werden.

1. BERECHNUNGSGRUNDLAGEN

1.1 Allgemeines

Die Bemessung der Entwässerungsanlagen erfolgt gemäß den RAS-Ew 'Richtlinien für die Anlage von Straßen/Entwässerung, Ausgabe 2005', dem ATV-DVWK-Arbeitsblatt 'A 117 – Bemessung von Regenrückhalteräumen' sowie dem DWA-Arbeitsblatt 'A 138 – Planung, Bau und Betrieb von Anlagen zur Versickerung von Niederschlagswasser'.

Die Maßgaben des Merkblattes "ATV-DVWK-M 153 – Handlungsempfehlungen zum Umgang mit Regenwasser" werden berücksichtigt.

1.2 Abflussbeiwerte

Für die Ermittlung der undurchlässigen Flächen (Au) der Einzugsgebiete werden folgende Abflussbeiwerte zugrunde gelegt:

•	Wasserflächen	Ψ	=	1,0
•	Befestigte Flächen – Asphalt, Rinnen, Borde, Bankette etc.	ψ	=	0,9
•	Wassergebundene Decken	ψ	=	0,7
•	Böschungen			
	- mit einer Neigung ≥ 50 %	Ψ	=	0,5
	- mit einer Neigung ≥ 15 % bis 50 %	Ψ	=	0,33*
	- mit einer Neigung ≥ 6 % bis 15 %	Ψ	=	0,3
•	Sonstige Flächen	Ψ	=	0,2
•	Mulden	Ψ	=	0,33*

^{*} Die Versickerrate für Böschungen bis 50 % Gefälle und für Mulden wird hierbei mit $q_s = 100$ [l/(s*ha)] angesetzt. $\psi = (r_{15.1} - q_s)/r_{15.1} = (150 - 100)/150 = 0.33$.

Seite 3

1.3 Bemessungsparameter zur Anlagendimensionierung

• Regenspende r D,n = maßgebende Regenspende gem. KOSTRA-

Regenreihen

(s. 1.5)

• Dauer D = Regendauer

• Häufigkeit n = 0,2 (5-jährig) für Mulden (dezentrale Versickerung) und

Regenrückhaltebecken mit Notüberlauf

= 0,1 (10-jährig) für Versickerungsflächen (dezentrale

Versickerung) ohne Notüberlauf

• Zuschlagsfaktor $f_Z = 1,10 \text{ bei n} \le 0,2 (5-jährig)$

 f_Z = 1,20 bei n > 0,2 (5-jährig)

• Abminderungsfaktor $f_A = 1,00$

1.4 Bemessungsparameter für die qualitative Gewässerbelastung

• Verkehrsfläche F4 = Straßen mit 300 - 5.000 Kfz/24h

F3 = Straßen unter 300 Kfz/24h

• Grünfläche F1

• Luft L1 = Straßen außerhalb von Siedlungen

1.5 Niederschlagshöhen und -spenden gemäß KOSTRA-Regenreihen

Örtliche Regendaten zur Bemessung nach Arbeitsblatt DWA-A 138

Datenherkunft / Niederschlagsstation	
Spalten-Nr. KOSTRA-Atlas	97
Zeilen-Nr. KOSTRA-Atlas	48
KOSTRA-Datenbasis	
KOSTRA-Zeitspanne	

Regendauer D	Regenspende r	_{D(T)} [l/(s ha)] für W	/iederkehrzeiten		
in [min]	T in [a]				
[]	1	2	5		
5	214,0	284,7	378,1		
10	176,5	226,6	292,8		
15	150,0	191,0	245,1		
20	130,5	166,0	213,0		
30	103,5	132,6	171,0		
45	79,0	102,8	134,2		
60	63,9	84,5	111,7		
90	47,6	61,6	80,2		
120	38,6	49,3	63,4		
180	28,8	36,1	45,7		
240	23,4	28,9	36,2		
360	17,4	21,2	26,2		
540	13,0	15,6	19,0		
720	10,5	12,5	15,1		
1080	8,1	9,7	11,8		
1440	6,9	8,3	10,1		
2880	4,6	5,5	6,6		
4320	3,5	4,2	5,1		


Bemer	kungen:
-------	---------

Seite 5

Örtliche Regendaten zur Bemessung nach Arbeitsblatt DWA-A 138

Datenherkunft / Niederschlagsstation	
Spalten-Nr. KOSTRA-Atlas	97
Zeilen-Nr. KOSTRA-Atlas	48
KOSTRA-Datenbasis	
KOSTRA-Zeitspanne	

2. ENTWÄSSERUNGSABSCHNITTE

2.1 Einzugsgebiet 1

Flächenart [-]	Flächengröße A [ha]	Abflussbeiwert Ψ	undurchl. Fläche A _u [ha]
Wasserflächen	-	1,0	-
Befestigte Flächen – Asphalt/Rinnen/Borde/Bankette	0,00	0,9	0,00
Befestigte Flächen – Wassergebundene Decke	-	0,7	-
Böschungen, Neigung ≥ 50 %	0,03	0,5	0,02
Böschungen, Neigung ≥ 15 % bis 50 %	-	0,33	-
Böschungen, Neigung > 6 % bis 15 %	-	0,3	-
Sonstige Flächen	-	0,2	-
Mulden	0,01	0,33	0,00
GESAMTSUMME	0,04		0,02

2.2 Einzugsgebiet 2

Flächenart	Flächengröße A	Abflussbeiwert	undurchl. Fläche A _u
[-]	[ha]	Ψ	[ha]
Wasserflächen	-	1,0	-
Befestigte Flächen – Asphalt/Rinnen/Borde/Bankette	0,03	0,9	0,03
Befestigte Flächen – Wassergebundene Decke	-	0,7	-
Böschungen, Neigung ≥ 50 %	0,02	0,5	0,01
Böschungen, Neigung ≥ 15 % bis 50 %	-	0,33	-
Böschungen, Neigung > 6 % bis 15 %	-	0,3	-
Sonstige Flächen	-	0,2	-
Mulden	0,01	0,33	0,00
GESAMTSUMME	0,06		0,04

Seite 7

2.3 Einzugsgebiet 3

Flächenart [-]	Flächengröße A [ha]	Abflussbeiwert Ψ	undurchl. Fläche A _u [ha]
Wasserflächen	-	1,0	-
Befestigte Flächen – Asphalt/Rinnen/Borde/Bankette	0,06	0,9	0,05
Befestigte Flächen – Wassergebundene Decke	-	0,7	-
Böschungen, Neigung ≥ 50 %	0,02	0,5	0,01
Böschungen, Neigung ≥ 15 % bis 50 %	-	0,33	-
Böschungen, Neigung > 6 % bis 15 %	-	0,3	-
Sonstige Flächen	-	0,2	-
Mulden	0,01	0,33	0,00
GESAMTSUMME	0,09		0,06

2.4 Einzugsgebiet 4

Flächenart	Flächengröße A [ha]	Abflussbeiwert Ψ	undurchl. Fläche A _u [ha]
Wasserflächen	0.08	1,0	0.08
vvassemachen	0,06	1,0	0,00
Befestigte Flächen – Asphalt/Rinnen/Borde/Bankette	0,42	0,9	0,38
Befestigte Flächen – Wassergebundene Decke	-	0,7	-
Böschungen, Neigung ≥ 50 %	0,38	0,5	0,19
Böschungen, Neigung ≥ 15 % bis 50 %	-	0,33	-
Böschungen, Neigung > 6 % bis 15 %	0,81	0,3	0,24
Sonstige Flächen	-	0,2	-
Mulden	0,12	0,33	0,04
GESAMTSUMME	1,81		0,93

Seite 8

2.5 Einzugsgebiet 5

Flächenart	Flächengröße A	Abflussbeiwert	undurchl. Fläche A _u
[-]	[ha]	Ψ	[ha]
Wasserflächen	0,10	1,0	0,10
Befestigte Flächen – Asphalt/Rinnen/Borde/Bankette	0,24	0,9	0,22
Befestigte Flächen – Wassergebundene Decke	0,07	0,7	0,05
Böschungen, Neigung ≥ 50 %	0,34	0,5	0,17
Böschungen, Neigung ≥ 15 % bis 50 %	-	0,33	-
Böschungen, Neigung > 6 % bis 15 %	1,25	0,3	0,38
Sonstige Flächen	0,00	0,2	0,00
Mulden	0,07	0,33	0,02
GESAMTSUMME	2,07		0,94

2.6 Einzugsgebiet 6

Flächenart	Flächengröße A [ha]	Abflussbeiwert Ψ	undurchl. Fläche A _u [ha]
L1	[,,c]	1	[rici]
Wasserflächen	-	1,0	-
Befestigte Flächen – Asphalt/Rinnen/Borde/Bankette	0,04	0,9	0,04
Befestigte Flächen – Wassergebundene Decke	-	0,7	-
Böschungen, Neigung ≥ 50 %	0,02	0,5	0,01
Böschungen, Neigung ≥ 15 % bis 50 %	-	0,33	-
Böschungen, Neigung > 6 % bis 15 %	0,07	0,3	0,02
Sonstige Flächen	-	0,2	-
Mulden	0,02	0,33	0,01
GESAMTSUMME	0,15		0,08

2.7 Einzugsgebiet 7

Flächenart [-]	Flächengröße A [ha]	Abflussbeiwert Ψ	undurchl. Fläche A _u [ha]
Wasserflächen	0,16	1,0	0,16
Befestigte Flächen – Asphalt/Rinnen/Borde/Bankette	0,80	0,9	0,72
Befestigte Flächen – Wassergebundene Decke	0,12	0,7	0,08
Böschungen, Neigung ≥ 50 %	0,80	0,5	0,40
Böschungen, Neigung ≥ 15 % bis 50 %	-	0,33	-
Böschungen, Neigung > 6 % bis 15 %	2,80	0,3	0,84
Sonstige Flächen	0,00	0,2	0,00
Mulden	0,26	0,33	0,09
GESAMTSUMME	4,94		2,29

2.8 Einzugsgebiet 8

Flächenart	Flächengröße A	Abflussbeiwert	undurchl. Fläche A _u
[-]	[ha]	Ψ	[ha]
Wasserflächen	-	1,0	-
Befestigte Flächen – Asphalt/Rinnen/Borde/Bankette	0,00	0,9	0,00
Befestigte Flächen – Wassergebundene Decke	-	0,7	-
Böschungen, Neigung ≥ 50 %	0,00	0,5	0,00
Böschungen, Neigung ≥ 15 % bis 50 %	0,02	0,33	0,01
Böschungen, Neigung > 6 % bis 15 %	-	0,3	-
Sonstige Flächen	-	0,2	-
Mulden	0,00	0,33	0,00
GESAMTSUMME	0,02		0,01

Seite 10

3. ANLAGENBEMESSUNG

3.1 Sickermulde 1

Dimensionierung einer Versickerungsmulde nach Arbeitsblatt DWA-A 138

091.28.01

B 11 / Ausbau nördlich Reindlschmiede

Auftraggeber:

Freistaat Bayern

Staatliches Bauamt Weilheim

Muldenversickerung:

SM 1 - 5j (n=0,2)

EZG 01

Eingabedaten: $V = [(A_u + A_S) * 10^{-7} * r_{D(n)} - A_S * k_f / 2] * D * 60 * f_Z$

E: 1: 4 a:: 1	1.	1 2	400
Einzugsgebietsfläche	AE	m ²	186
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	1,00
undurchlässige Fläche	A_{u}	m ²	186
Versickerungsfläche	As	m^2	55
Durchlässigkeitsbeiwert der gesättigten Zone	k _f	m/s	5,0E-05
gewählte Regenhäufigkeit	n	1/Jahr	0,2
Zuschlagsfaktor	f_Z	-	1,10

örtliche Regendaten:

D [min]	r _{D(n)} [l/(s*ha)]
5	378,1
10	292,8
15	245,1
20	213,0
30	171,0
45	134,2
60	111,7
90	80,2
120	63,4

Berechnung:

Doro ominang.
V [m³]
2,6
3,7
4,5
5,0
5,4
5,5
5,2
3,3
1,2

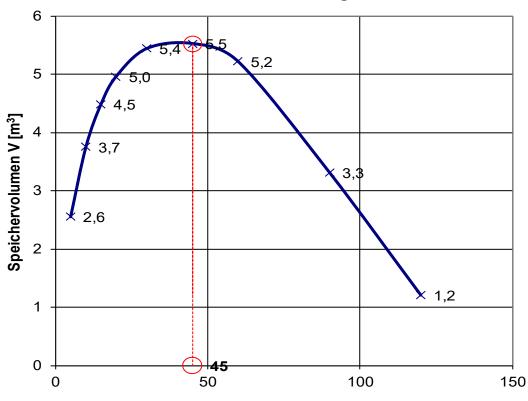
Ergebnisse:

maßgebende Dauer des Bemessungsregens	D	min	45
maßgebende Regenspende	r _{D(n)}	l/(s*ha)	134,2
erforderliches Muldenspeichervolumen	V	m ³	5,5
gewähltes Muldenspeichervolumen	V _{gew}	m³	5,6
gewähltes Muldenspeichervolumen Einstauhöhe in der Mulde	V _{gew}	m ³	5,6 0,10

Dimensionierung einer Versickerungsmulde nach Arbeitsblatt DWA-A 138

091.28.01

B 11 / Ausbau nördlich Reindlschmiede


Auftraggeber:

Freistaat Bayern Staatliches Bauamt Weilheim

Muldenversickerung:

SM 1 - 5j (n=0,2) EZG 01

Muldenversickerung

Dauer des Bemessungsregens D [min]

3.2 Sickermulde 2

Dimensionierung einer Versickerungsmulde nach Arbeitsblatt DWA-A 138

091.28.01

B 11 / Ausbau nördlich Reindlschmiede

Auftraggeber:

Freistaat Bayern

Staatliches Bauamt Weilheim

Muldenversickerung:

SM 2 - 5j (n=0,2)

EZG 02

Eingabedaten: $V = [(A_u + A_S) * 10^{-7} * r_{D(n)} - A_S * k_f / 2] * D * 60 * f_Z$

Einzugsgebietsfläche	A _E	m ²	396
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ _m	-	1,00
undurchlässige Fläche	A_{u}	m ²	396
Versickerungsfläche	As	m ²	70
Durchlässigkeitsbeiwert der gesättigten Zone	k _f	m/s	5,0E-05
gewählte Regenhäufigkeit	n	1/Jahr	0,2
Zuschlagsfaktor	f _z	-	1,10

örtliche Regendaten:

D [min]	r _{D(n)} [l/(s*ha)]		
5	378,1		
10	292,8		
15	245,1		
20	213,0		
30	171,0		
45	134,2		
60	111,7		
90	80,2		
120	63,4		

Berechnung:

V [m³]
5,2
7,9
9,6
10,8
12,3
13,4
13,7
11,8
9,5

Ergebnisse:

maßgebende Dauer des Bemessungsregens	D	min	60
maßgebende Regenspende	$r_{D(n)}$	l/(s*ha)	111,7
erforderliches Muldenspeichervolumen	V	m ³	13,7
gewähltes Muldenspeichervolumen	V _{gew}	m³	14,6
Einstauhöhe in der Mulde	z _M	m	0,21
Entleerungszeit der Mulde	t _∈	h	2,3

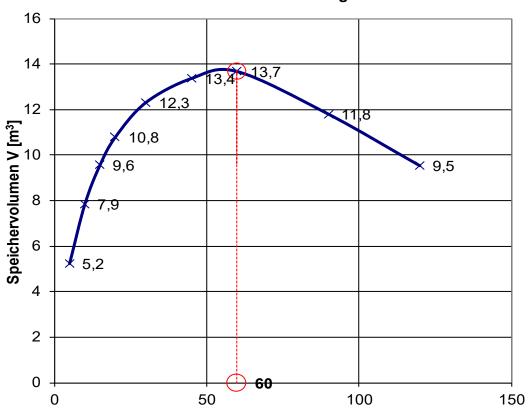
Dimensionierung einer Versickerungsmulde nach Arbeitsblatt DWA-A 138

091.28.01

B 11 / Ausbau nördlich Reindlschmiede

Auftraggeber:

Freistaat Bayern


Staatliches Bauamt Weilheim

Muldenversickerung:

SM 2 - 5j (n=0,2)

EZG 02

Muldenversickerung

Dauer des Bemessungsregens D [min]

Seite 14

3.3 Sickermulde 3

Dimensionierung einer Versickerungsmulde nach Arbeitsblatt DWA-A 138

091.28.01

B 11 / Ausbau nördlich Reindlschmiede

Auftraggeber:

Freistaat Bayern

Staatliches Bauamt Weilheim

Muldenversickerung:

SM 3 - 5j (n=0,2)

EZG 03

Eingabedaten: $V = [(A_u + A_S) * 10^{-7} * r_{D(n)} - A_S * k_f / 2] * D * 60 * f_Z$

Einzugsgebietsfläche	A _E	m ²	676
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	$\Psi_{\!m}$	-	1,00
undurchlässige Fläche	A _u	m ²	676
Versickerungsfläche	A _s	m ²	125
Durchlässigkeitsbeiwert der gesättigten Zone	k _f	m/s	5,0E-05
gewählte Regenhäufigkeit	n	1/Jahr	0,2
Zuschlagsfaktor	f_Z	-	1,10

örtliche Regendaten:

D [min]	r _{D(n)} [l/(s*ha)]
5	378,1
10	292,8
15	245,1
20	213,0
30	171,0
45	134,2
60	111,7
90	80,2
120	63,4

Berechnung:

Ergebnisse:

maßgebende Dauer des Bemessungsregens	D	min	60
maßgebende Regenspende	r _{D(n)}	l/(s*ha)	111,7
erforderliches Muldenspeichervolumen	V	m ³	23,1
gewähltes Muldenspeichervolumen	V_{gew}	m³	23,1
Einstauhöhe in der Mulde	z _M	m	0,18
Entleerungszeit der Mulde	t _E	h	2,1

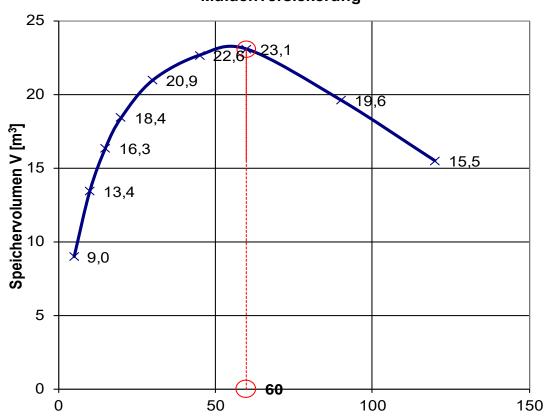
Dimensionierung einer Versickerungsmulde nach Arbeitsblatt DWA-A 138

091.28.01

B 11 / Ausbau nördlich Reindlschmiede

Auftraggeber:

Freistaat Bayern


Staatliches Bauamt Weilheim

Muldenversickerung:

SM 3 - 5j (n=0,2)

EZG 03

Muldenversickerung

Dauer des Bemessungsregens D [min]

3.4 Sickerfläche 1

Dimensionierung einer Versickerungsmulde nach Arbeitsblatt DWA-A 138

091.28.01

B 11 / Ausbau nördlich Reindlschmiede

Auftraggeber:

Freistaat Bayern

Staatliches Bauamt Weilheim

Muldenversickerung:

SF 1 - 10j (n=0,1)

EZG 04

Eingabedaten: $V = [(A_u + A_S) * 10^{-7} * r_{D(n)} - A_S * k_f / 2] * D * 60 * f_Z$

Einzugsgebietsfläche	A _E	m ²	9.325
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ _m	-	1,00
undurchlässige Fläche	A _u	m ²	9.325
Versickerungsfläche	As	m ²	797
Durchlässigkeitsbeiwert der gesättigten Zone	k _f	m/s	5,0E-05
gewählte Regenhäufigkeit	n	1/Jahr	0,1
Zuschlagsfaktor	f_{7}	-	1,20

örtliche Regendaten:

D [min]	r _{D(n)} [l/(s*ha)]
5	448,8
10	342,9
15	286,1
20	248,5
30	200,0
45	157,9
60	132,3
90	94,2
120	74,1

Berechnung:

V [m ³]
A [iii]
156,4
235,6
291,2
333,5
394,2
453,3
492,4
488,7
475,9

Ergebnisse:

maßgebende Dauer des Bemessungsregens	D	min	60
maßgebende Regenspende	r _{D(n)}	l/(s*ha)	132,3
erforderliches Muldenspeichervolumen	V	m³	492,4
gewähltes Muldenspeichervolumen	V_{gew}	m³	500
gewähltes Muldenspeichervolumen Einstauhöhe in der Mulde	V _{gew}	m ³	500 0,63

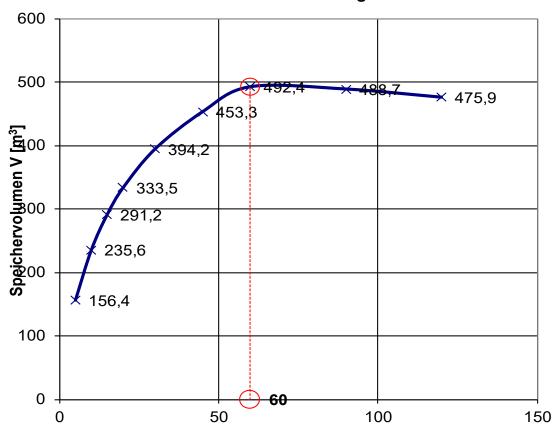
Dimensionierung einer Versickerungsmulde nach Arbeitsblatt DWA-A 138

091.28.01

B 11 / Ausbau nördlich Reindlschmiede

Auftraggeber:

Freistaat Bayern


Staatliches Bauamt Weilheim

Muldenversickerung:

SF 1 - 10j (n=0,1)

EZG 04

Muldenversickerung

Dauer des Bemessungsregens D [min]

3.5 Regenrückhaltebecken 1

Bemessung von Rückhalteräumen im Näherungsverfahren nach Arbeitsblatt DWA-A 117

091.28.01

B 11 / Ausbau nördlich Reindlschmiede

Auftraggeber:

Freistaat Bayern Staatliches Bauamt Weilheim

Rückhalteraum:

RRB 1 - 5j (n=0,2) EW 05

Eingabedaten: $V_{s,u} = (r_{D(n)} - q_{dr}) * D * f_Z * f_A * 0.06 mit q_{dr} = (Q_{dr,RRB} + Q_{dr,RÜB} - Q_{t24}) / A_u$

5,4 (2(1), 141.)		,	•
Einzugsgebietsfläche	A _E	m ²	9.383
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	1,00
undurchlässige Fläche	A _u	m ²	9.383
wrgelagertes Volumen RÜB	$V_{R\ddot{U}B}$	m ³	0,0
vorgegebener Drosselabfluss RÜB	$Q_{dr,R\ddot{U}B}$	l/s	0,0
Trockenwetterabfluss	Q _{t24}	l/s	0,0
Drosselabfluss	Q _{dr}	l/s	16,4
Drosselabflussspende bezogen auf A _u	q _{dr}	l/(s ha)	17,4
gewählte Länge der Sohlfläche (Rechteckbecken)	Ls	m	43,0
gewählte Breite der Sohlfläche (Rechteckbecken)	bs	m	23,5
gewählte max. Einstauhöhe (Rechteckbecken)	z	m	0,5
gewählte Böschungsneigung (Rechteckbecken)	1:m	-	2,0
gewählte Regenhäufigkeit	n	1/Jahr	0,2
Zuschlagsfaktor	f _Z	-	1,10
Fließzeit zur Berechnung des Abminderungsfaktors	t _f	min	o
Abminderungsfaktor	f _A	-	1,000

Ergebnisse:

maßgebende Dauer des Bemessungsregens	D	min	60
maßgebende Regenspende	r _{D,n}	l/(s*ha)	111,7
erfordl. spezifisches Speichervolumen	V _{erf,s,u}	m³/ha	373
erforderliches Speichervolumen	V _{erf}	m ³	350
vorhandenes Speichervolumen	V	m³	539
Beckenlänge an Böschungsoberkante	Lo	m	45,0
Beckenbreite an Böschungsoberkante	b _o	m	25,5
Entleerungszeit	t _E	h	9,2

Bemerkungen:

Drossel DN 150, max. $Q_{dr} = 32,7 \text{ l/s}$

Bemessung von Rückhalteräumen im Näherungsverfahren nach Arbeitsblatt DWA-A 117

091.28.01

B 11 / Ausbau nördlich Reindlschmiede

Auftraggeber:

Freistaat Bayern

Staatliches Bauamt Weilheim

Rückhalteraum:

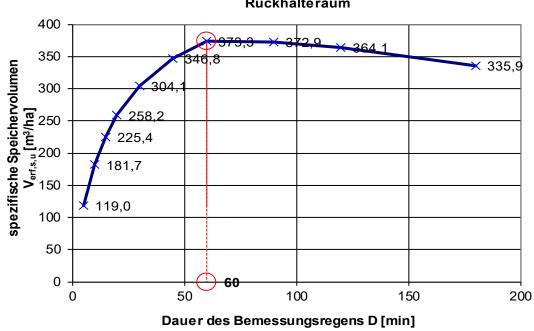
RRB 1 - 5j (n=0,2)

EW 05

örtliche Regendaten:

D [min]	r _{D(n)} [l/(s*ha)]
5	378,1
10	292,8
15	245,1
20	213,0
30	171,0
45	134,2
60	111,7
90	80,2
120	63,4
180	45,7

Fülldauer RÜB:


D _{RBÜ} [min]
0
0
0
0
0
0
0
0
0
0

Berechnung:

V _{s,u} [m³/ha]
119,0
181,7
225,4
258,2
304,1
346,8
373,3
372,9
364,1
335,9

maßgebliche Dauerstufen D

Rückhalteraum

3.6 Sickermulde 4

Dimensionierung einer Versickerungsmulde nach Arbeitsblatt DWA-A 138

091.28.01

B 11 / Ausbau nördlich Reindlschmiede

Auftraggeber:

Freistaat Bayern

Staatliches Bauamt Weilheim

Muldenversickerung:

SM 4 - 5j (n=0,2)

EZG 06

Eingabedaten: $V = [(A_u + A_S) * 10^{-7} * r_{D(n)} - A_S * k_f / 2] * D * 60 * f_Z$

Einzugsgebietsfläche	A _E	m ²	758
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	1,00
undurchlässige Fläche	A_{u}	m ²	758
Versickerungsfläche	As	m ²	145
Durchlässigkeitsbeiwert der gesättigten Zone	k _f	m/s	5,0E-05
gewählte Regenhäufigkeit	n	1/Jahr	0,2
Zuschlagsfaktor	f_Z	-	1,10

örtliche Regendaten:

D [min]	r _{D(n)} [l/(s*ha)]
5	378,1
10	292,8
15	245,1
20	213,0
30	171,0
45	134,2
60	111,7
90	80,2
120	63,4

Berechnung:

V [m³]
10,1
15,1
18,3
20,6
23,4
25,2
25,6
21,5
16,6

Ergebnisse:

maßgebende Dauer des Bemessungsregens	D	min	60
maßgebende Regenspende	r _{D(n)}	l/(s*ha)	111,7
erforderliches Muldenspeichervolumen	V	m ³	25,6
gewähltes Muldenspeichervolumen	V_{gew}	m ³	26,9
Einstauhöhe in der Mulde	z _M	m	0,19
Entleerungszeit der Mulde	t⊨	h	2,1

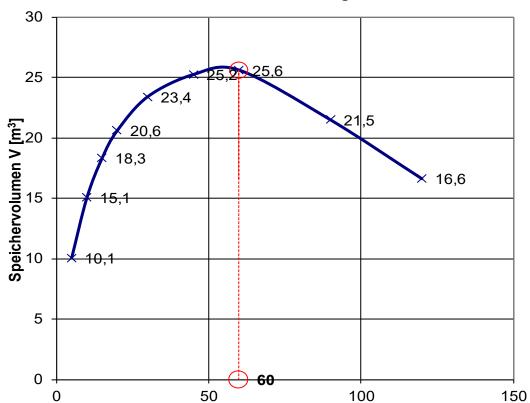
Dimensionierung einer Versickerungsmulde nach Arbeitsblatt DWA-A 138

091.28.01

B 11 / Ausbau nördlich Reindlschmiede

Auftraggeber:

Freistaat Bayern


Staatliches Bauamt Weilheim

Muldenversickerung:

SM 4 - 5j (n=0,2)

EZG 06

Muldenversickerung

Dauer des Bemessungsregens D [min]

3.7 Regenrückhaltebecken 2

Bemessung von Rückhalteräumen im Näherungsverfahren nach Arbeitsblatt DWA-A 117

091.28.01

B 11 / Ausbau nördlich Reindlschmiede

Auftraggeber:

Freistaat Bayern Staatliches Bauamt Weilheim

Rückhalteraum:

RRB 2 - 5j (n=0,2) EW 07

Eingabedaten: $V_{s,u} = (r_{D(n)} - q_{dr}) * D * f_Z * f_A * 0,06 mit q_{dr} = (Q_{dr,RRB} + Q_{dr,RÜB} - Q_{t24}) / A_u$

ganotation	(~ur,KKD	~ur,KUB ~124/	· · · · u
Einzugsgebietsfläche	A _E	m ²	22.890
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	1,00
undurchlässige Fläche	A _u	m ²	22.890
vorgelagertes Volumen RÜB	$V_{R\ddot{U}B}$	m ³	0,0
vorgegebener Drosselabfluss RÜB	$Q_{dr,R\ddot{U}B}$	l/s	0,0
Trockenwetterabfluss	Q _{t24}	l/s	0,0
Drosselabfluss	Q_{dr}	l/s	34,5
Drosselabflussspende bezogen auf A _u	q_{dr}	l/(s ha)	15,1
gewählte Länge der Sohlfläche (Rechteckbecken)	L _s	m	64,5
gewählte Breite der Sohlfläche (Rechteckbecken)	b _s	m	24,5
gewählte max. Einstauhöhe (Rechteckbecken)	z	m	0,7
gewählte Böschungsneigung (Rechteckbecken)	1:m	-	2,0
gewählte Regenhäufigkeit	n	1/Jahr	0,2
Zuschlagsfaktor	f_Z	-	1,10
Fließzeit zur Berechnung des Abminderungsfaktors	t _f	min	0
Abminderungsfaktor	f _A	-	1,000

Ergebnisse:

Eigebinsse:			
maßgebende Dauer des Bemessungsregens	D	min	90
maßgebende Regenspende	r _{D,n}	l/(s*ha)	80,2
erfordl. spezifisches Speichervolumen	V _{erf,s,u}	m³/ha	387
erforderliches Speichervolumen	V _{erf}	m ³	886
vorhandenes Speichervolumen	V	m³	1195
Beckenlänge an Böschungsoberkante	Lo	m	67,3
Beckenbreite an Böschungsoberkante	b _o	m	27,3
Entleerungszeit	t _E	h	9,6

Bemerkungen:

Drossel DN 200, max. $Q_{dr} = 69,0 \text{ l/s}$

Bemessung von Rückhalteräumen im Näherungsverfahren nach Arbeitsblatt DWA-A 117

091.28.01

B 11 / Ausbau nördlich Reindlschmiede

Auftraggeber:

Freistaat Bayern

Staatliches Bauamt Weilheim

Rückhalteraum:

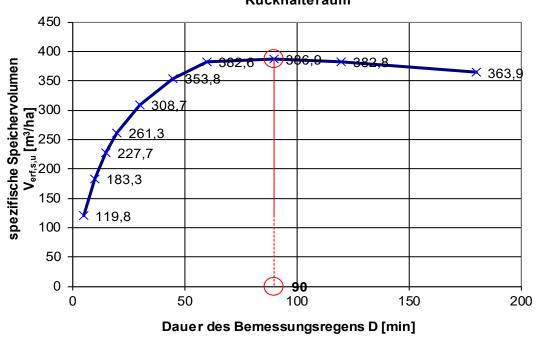
RRB 2 - 5j (n=0,2)

EW 07

örtliche Regendaten:

D [min]	r _{D(n)} [l/(s*ha)]
5	378,1
10	292,8
15	245,1
20	213,0
30	171,0
45	134,2
60	111,7
90	80,2
120	63,4
180	45,7

Fülldauer RÜB:


D _{RBÜ} [min]
0
0
0
0
0
0
0
0
0
0

Berechnung:

V _{s,u} [m³/ha]
119,8
183,3
227,7
261,3
308,7
353,8
382,6
386,9
382,8
363,9

maßgebliche Dauerstufen D

3.8 Sickermulde 5

Dimensionierung einer Versickerungsmulde nach Arbeitsblatt DWA-A 138

091.28.01

B 11 / Ausbau nördlich Reindlschmiede

Auftraggeber:

Freistaat Bayern

Staatliches Bauamt Weilheim

Muldenversickerung:

SM 5 - 5j (n=0,2)

EZG 08

Eingabedaten: $V = [(A_u + A_S) * 10^{-7} * r_{D(n)} - A_S * k_f / 2] * D * 60 * f_Z$

Einzugsgebietsfläche	A _E	m ²	139
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	1,00
undurchlässige Fläche	A_{u}	m^2	139
Versickerungsfläche	As	m ²	30
Durchlässigkeitsbeiwert der gesättigten Zone	k _f	m/s	5,0E-05
gewählte Regenhäufigkeit	n	1/Jahr	0,2
Zuschlagsfaktor	fz	_	1.10

örtliche Regendaten:

D [min]	r _{D(n)} [l/(s*ha)]
5	378,1
10	292,8
15	245,1
20	213,0
30	171,0
45	134,2
60	111,7
90	80,2
120	63,4

Berechnung:

V [m³]
1,9
2,8
3,4
3,8
4,2
4,5
4,5
3,6
2,5

Ergebnisse:

maßgebende Dauer des Bemessungsregens	D	min	45
maßgebende Regenspende	r _{D(n)}	l/(s*ha)	134,2
erforderliches Muldenspeichervolumen	V	m ³	4,5
gewähltes Muldenspeichervolumen	V _{gew}	m³	4,6
Einstauhöhe in der Mulde	z _M	m	0,15
Entleerungszeit der Mulde	t _∈	h	1,7

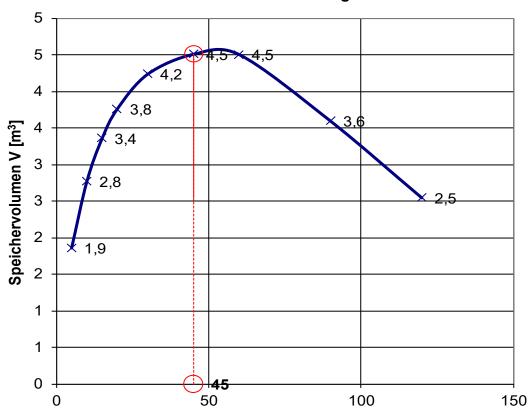
Dimensionierung einer Versickerungsmulde nach Arbeitsblatt DWA-A 138

091.28.01

B 11 / Ausbau nördlich Reindlschmiede

Auftraggeber:

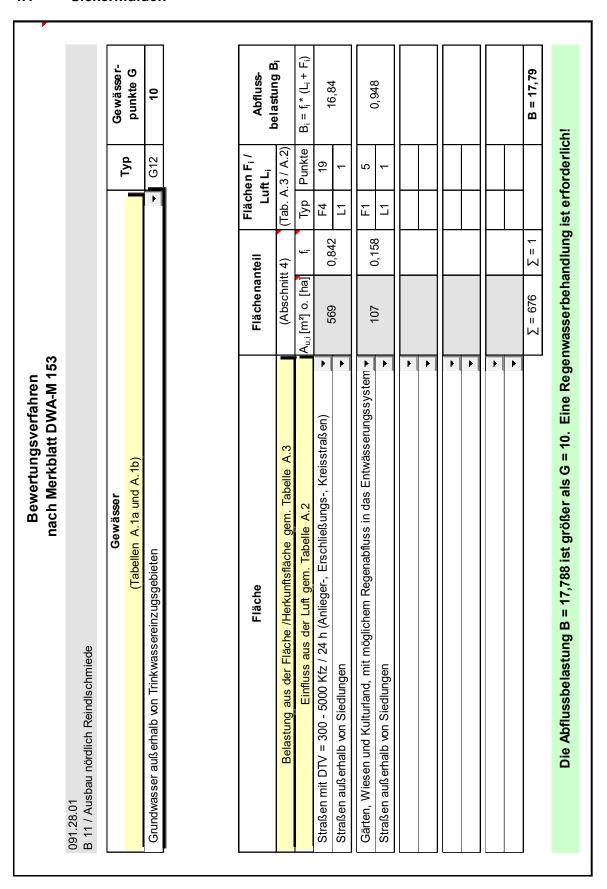
Freistaat Bayern

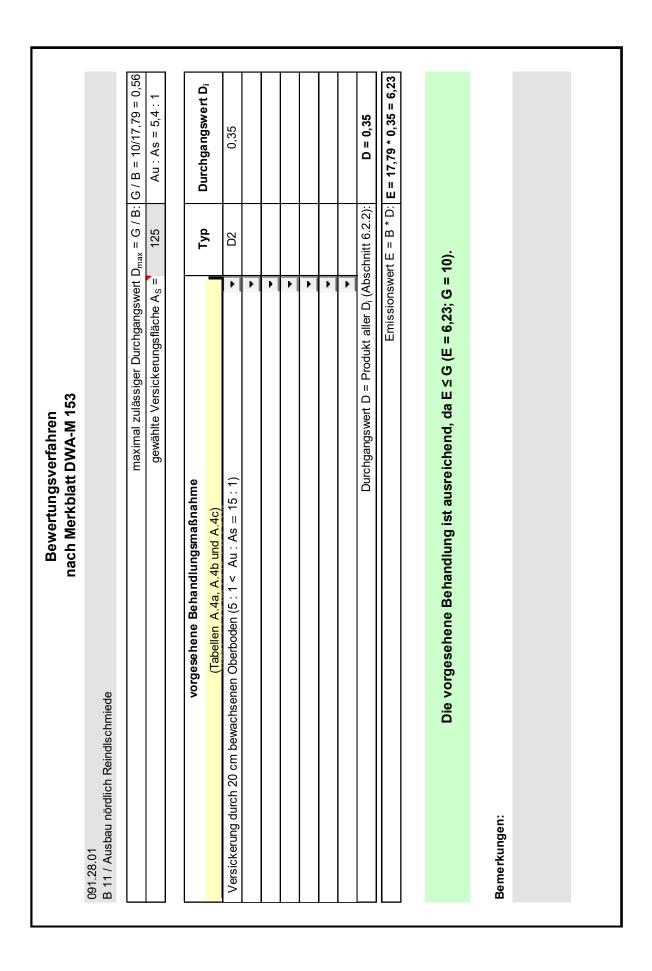

Staatliches Bauamt Weilheim

Muldenversickerung:

SM 5 - 5j (n=0,2)

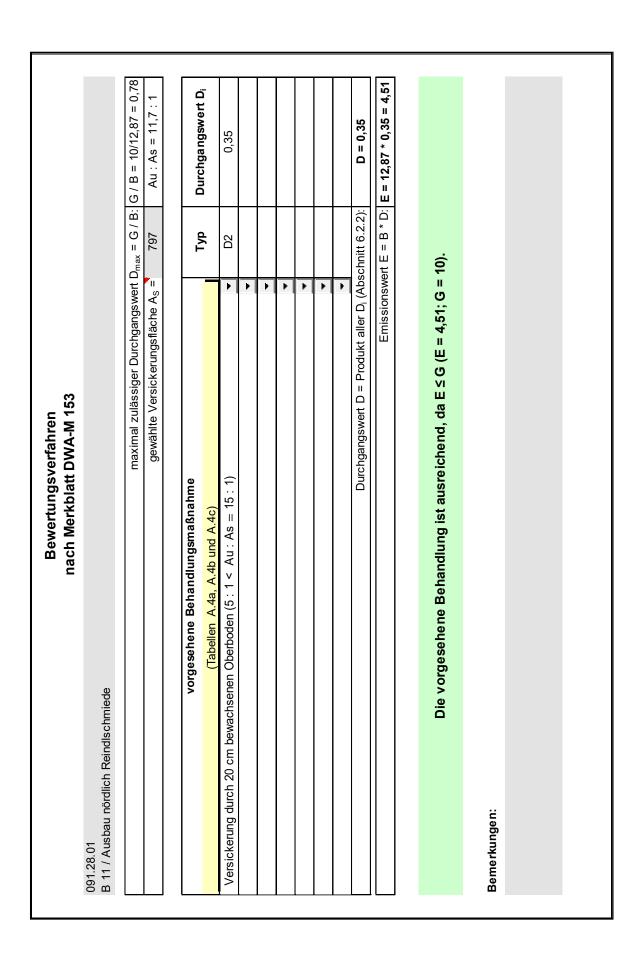
EZG 08


Muldenversickerung



Dauer des Bemessungsregens D [min]

4. NACHWEISE GEMÄSS MERKBLATT ATV-DVWK-M 153


4.1 Sickermulden

4.2 Sickerfläche 1

Bewertungsverfahren nach Merkblatt DWA-M 153				_
091.28.01 B 11 / Ausbau nördlich Reindlschmiede				
Gewässer		! F	Gewässer-	
(Tabellen A.1a und A.1b)		dy.	punkte G	
Grundwasser außerhalb von Trinkwassereinzugsgebieten		- G12	10	
Fläche	Flächenanteil	Flächen F _i / Luft L _i	Abfluss-	
Belastung aus der Fläche /Herkunftsfläche gem. Tabelle A.3	(Abschnitt 4)	(Tab. A.3 / A.2)	Delastung Di	
Einfluss aus der Luft gem. Tabelle A.2	A _{u,i} [m²] o. [ha] f _i	Typ Punkte	$B_i = f_i^* (L_i + F_i)$	
Straßen mit DTV = 300 - 5000 Kfz / 24 h (Anlieger-, Erschließungs-, Kreisstraßen)	4580 0,491	, F4	9,82	
Straßen außerhalb von Siedlungen		L1 1		
Gärten, Wiesen und Kulturland, mit möglichem Regenabfluss in das Entwässerungssystem Straßen außerhalb von Siedlungen	4745 0,509	F1 5 L1 1	3,054	
•				
	$\Sigma = 9325$ $\Sigma = 1$		B = 12,87	
Die Abflussbelastung B = 12,874 ist größer als G = 10. Eine Regenwasserbehandlung ist erforderlich!	nwasserbehandlur	ıg ist erforderlic	ch!	
				1

4.3 Regenrückhaltebecken

	niede	Gewässer Gewässer-	(Tabellen A.1a und A.1b) punkte G	(bsp = 1-5 m; $v > = 0,3$ m/s) \bullet G5 18	Flächen F _i / Abfluss-	sr Fläche /Herkunftsfläche gem. Tabelle A.3 (Tab. A.3 / A.2)	ss aus der Luft gem. Tabelle A.2 $A_{u,i}[m^2]$ o. $[ha]$ fi Typ Punkte $B_i = f_i^*(L_i + F_i)$	fz / 24 h (Anlieger-, Erschließungs-, Kreisstraßen)	L1 1	mit möglichem Regenabfluss in das Entwässerungssystem ▼ 1/617 0 630 F1 5 3 83/	L1 1	•	F	•	b	F	A	$\Sigma = 22890$ $\Sigma = 1$ B = 11,05	3 = 11,054 ist kleiner (oder gleich) G = 18. Eine Regenwasserbehandlung ist nicht erforderlich.
nach Merkblatt DWA-M 153	091.28.01 B 11 / Ausbau nördlich Reindlschmiede	Gewässel	(Tabellen A.1a un	kleiner Hügel- und Berglandbach (bsp = 1-5 m; $v > 0.3$ m/s)	Fläche	Belastung aus der Fläche /Herkunftsfläche gem. Tabelle A.3	Einfluss aus der Luft gem. Tabelle A.2	Straßen mit DTV = 300 - 5000 Kfz / 24 h (Anlieger-, Erschließungs-, Kreisstraßen)	Straßen außerhalb von Siedlungen	Gärten, Wiesen und Kulturland, mit möglichem Regenabfluss in das	Straßen außerhalb von Siedlungen								Die Abflussbelastung B = 11,054 ist kleiner (oder gl

4.4 Ausleitung in Auer Bach

091.28.01 B 11 f Ausbau nordiich Reindischmiede Gewässer (Tabellen A.1 a und A.1b) Fläche Fläche Fläche Fläche Fläche Fläche Fläche Fläche Fläche Flächen Fläc	Bewertungsverfahren nach Merkblatt DWA-M 153	•				
Gewässer Typ Typ Typ Typ Typ Typ Typ Typ G4 Typ G4 Typ C4 Luft L ₁ Luft L ₁ Day Dunkte B₁ Bpunkte B₁ G4 Luft L₁ T C2846 0,241 E1 T C2846 0,759 E1 T Regenabifluss in das Entwässerungssystem ▼ ▼ Z2846 0,759 E1 T X = 3749 ∑ = 1 X = 3749 ∑ = 1						
(Tabellen A.1a und A.1b) Tight Tight <th< th=""><th>Gewässer</th><th></th><th></th><th></th><th>- 9</th><th>Gewässer-</th></th<>	Gewässer				- 9	Gewässer-
tine Flächenanteil Flächen F₁/Lı botter F₁/Lı bot	(Tabellen A.1a und A.1b)				<u></u>	punkte G
Fläche Fläche Flächenanteil Flächen Fi / Luft Li aus der Luft gem. Tabelle A.3 I Au₁ [m²] o. [ha] fi Typ Punkte Bi / 24 h (Anlieger, Erschließungs, Kreisstraßen) The méglichem Regenabfluss in das Entwässerungssystem The méglichem Regenabfluss in das Entwässerungssystem The méglichem Regenabflus in das Entwässerungssystem The méglichem Regenapflus in das Entwässerungssystem The method is a statistical film of the method in das Entwicken Regenapflus i				Þ	G4	21
Fläche /Herkunftsfläche gem. Tabelle A.3 aus der Luft gem. Tabelle A.2 aus der Luft gem. Tabelle A.2 aus der Luft gem. Tabelle A.2 Au₁ [m²] o. [ha] f₁ Typ Punkte B₁ / 24 h (Anlieger, Erschließungs-, Kreisstraßen) t möglichem Regenabfluss in das Entwässerungssystem t möglichem Regenabfluss in das Entwässerungssystem T	Fläche	Flächenar	ıteil	Flächen Luft I	/	Abfluss-
aus der Luft gem. Tabelle A.2 1 24 h (Anlieger, Erschließungs-, Kreisstraßen) 2 2846 2 2846 2 2846 2 2846 2 2846 2 2846 2 2846 2 2846 2 2846 2 2846 2 2846 2 2846 3 2846 4 19 7 1 1		(Abschnit	t 4)	(Tab. A.3	/ A.2)	Delastung b _i
1 24 h (Anlieger-, Erschließ ungs-, Kreisstraßen)	Einfluss aus der Luft gem. Tabelle A.2	A _{u,i} [m²] o. [ha]			unkte	$B_i = f_i^* (L_i + F_i)$
t möglichem Regenabfluss in das Entwässerungssystem ▼ 2846 0,759 F1 5	Erschließungs-, Kreisstraßen)	0003	0 244	F4	19	08 7
t möglichem Regenabfluss in das Entwässerungssystem			0,54	L1	1	4,02
	Regenabfluss in das Entwässerungssystem		0.750	F1	2	1 551
Kleiner (oder aleich) $G = 21$. Eine Regenwasserbehandlung ist nicht erforde			0,739	7	_	4,004
Kleiner (oder aleich) $G=21$. Eine Regenwasserbehandlung ist nicht erforde						
Kleiner (oder aleich) $\mathbf{G} = 21$. Eine Regenwasserbehandlung ist nicht erforde						
Kleiner (oder aleich) $\mathbf{G} = 21$. Eine Regenwasserbehandlung ist nicht erforde						
$ \begin{array}{c c} \hline $						
Δ						
$2 = 3749$ $\Sigma = 1$ Kleiner (oder gleich) G = 21. Eine Regenwasserbehandlung ist nicht erforde						
		$\Sigma = 3749$	Σ=1			B = 9,37
	Die Abflussbelastung B = 9,374 ist kleiner (oder gleich) G = 21. Eine Re	yenwasserbel	handlur	ng ist nicl	ht erfo	rderlich.

4.5 Ausleitung bei Bau-km 1 + 920

Bewertungsverfahren nach Merkblatt DWA-M 153			
091.28.01 B 11 / Ausbau nördlich Reindlschmiede			
Gewässer	ŀ	Gewässer-	
(Tabellen A.1a und A.1b)	dk	punkte G	
Grundwasser außerhalb von Trinkwassereinzugsgebieten	- G12	10	
Fläche Fläche	Flächen F; /	Abfluss-	
Belastung aus der Fläche /Herkunftsfläche gem. Tabelle A.3 (Ta	(Tab. A.3 / A.2)	belastung B _i	
A _{u,i} [m²] o. [haj] f _i	Punkte	$B_i = f_i^* (L_i + F_i)$	
Straßen mit DTV = 300 - 5000 Kfz / 24 h (Anlieger-, Erschließungs-, Kreisstraßen)	19	232	
	_	1,01	
t möglichem Regenabfluss in das Entwässerungssystem ▼ 23290 0.884	2	5.304	
	_	5	
•			
F			
I			
>			
A			
$\Sigma = 26333$ $\Sigma = 1$		B = 7,62	
Die Abflussbelastung B = 7,624 ist kleiner (oder gleich) G = 10. Eine Regenwasserbehandlung ist nicht erforderlich.	nicht erf	orderlich.	